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The Numerical Solution of Hyperbolic Systems 
Using Bicharacteristics 

By R. L. Johnston and S. K. Pal* 

Abstract. This paper is concerned with deriving methods for solving numerically a first- 
order quasilinear hyperbolic system. The basic principle of the method is to integrate along 
one of the bicharacteristics of the system to obtain an equivalent integral system. The 
numerical methods are then obtained by making suitable approximations to this integral 
system. Stability and convergence properties are analyzed in some detail. The methods are 
relatively easy to implement and have been successfully applied to problems in one, two and 
three space dimensions in such areas as magnetohydrodynamics and dynamic elasticity. 

1. Introduction. In this paper, we shall deal with the problem of solving numeri- 
cally the first-order hyperbolic system of partial differential equations 

( 1 l ) -d t ~+ E- A i -d = , t > O, 

where x (xl, x, x) is a point in Euclidean m-space E". Here, U = (u1, , )T, 
where ui = ui(t, xi, * i XM), 1 i ? N, are the dependent variables and each Ai is 
an N X N matrix. The elements of the Ai's can be functions of the dependent as 
well as the independent variables but we shall assume they have continuous partial 
derivatives, are uniformly bounded and satisfy a uniform Lipschitz condition with 
respect to all variables. We shall solve the system (1.1) subject to the initial conditions 

(1.2) U(O, x) = G(x). 

We shall also assume that the problem is properly posed [14, p. 63]. We point out that 
our methods can be applied equally well to inhomogeneous problems although, for 
convenience, we shall discuss homogeneous problems only. 

For problems in one space dimension (m = 1) a number of good inethods are 
available including that of Courant, Isaacson and Rees [3] and the method of char- 
acteristics as described, for example, in [13]. These methods make use of special 
properties of the solution U(t, x) along the characteristic curves. For piroblems where 
m = 2, there are the methods of Lax and Wendroff [10] and [11]. Strang [15] has 
also proposed a method which is quite good. The method of characteristics can be 
extended but, even for m = 2 ([1] and [6]), the resulting algorithm is quite complicated 
because considerable effort has to be expended in determining in which direction 
one should integrate along the characteristic surface. Butler [2] suggested a method 
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which makes use of the bicharacteristics of the system (1.1) but, in addition to the 
great deal of computation involved, the derivation of the characteristic equations 
and elimination of the unknown derivatives by taking suitable linear combinations 
is quite a formidable task. 

The purpose of this paper is to propose a new way of deriving finite difference 
schemes for solving (1.1). The basic principle involves integrating along a suitable 
bicharacteristic of the system to obtain an equivalent integral system. Difference 
schemes of arbitrary accuracy can then be obtained by making suitable approxima- 
tions to the latter. One advantage of our approach is that it is independent of the 
number of space variables. In this paper, we shall confine our attention to two first- 
order schemes derived by this method. While the accuracy is low, we shall see that 
they are relatively easy to implement and are computationally feasible even for 
problems in three space dimensions. 

2. An Equivalent Integral System. In order to obtain an integral system equiv- 
alent to (1.1), we shall make use of the bicharacteristics of (1.1). We first give a brief 
description of the derivation of the equations of the bicharacteristics. A more de- 
tailed exposition is given in [7, p. 40] or [4, p. 200]. 

A characteristic surface S of the system (1.1) is defined to be a generalized surface 
or manifold in (m + 1)-dimensional space-time across which there is a jump in the 
normal derivative of the solution U of (1.1). We denote such a surface by 

(2.1) (t, Xi, - * * , X.) = 0 

and introduce new coordinates ~0, t1, ... I *m, where to = 4, so that to = 0 is the 
surface S itself and Ut0 is the derivative of U in the direction normal to S. Hence, S 
is characteristic if the coefficient of Ut. in the transformed version of (1.1) is singular, 
i.e., if 

(2.2) H = det(Xi + EX = 0, 

where X = 4 and X, = 4j, 1 < j < m. This is a first-order partial differential 
equation of degree N for 4. Since (1.1) is hyperbolic, H can be written as the product 
of N linear factors, 

N - 

H = I (X + hk), 
k-1 

where hk = hk(Xl, xi, ... , X., U1 ** UN) are the (real) eigenvalues of 
E A, X,. Hence, 4 is completely determined by the N equations 

(2.3) X + hk = O, 1 k < N. 

Now the characteristic curves of, say, the kth equation of (2.3) can be specified 
[4, p. 201] by 

(2.4) dt/ds 1, 

(2.5) dxi/ds = dhk/d3i, 1 < i < m, 

(2.6) dAi/ds = -Ohk/x_i, 1 < i < m. 

where ds represents a line element on S. Thus, corresponding to the N equations 
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(2.3), we have the N systems of characteristic curves known as the bicharacteristics 
of (1.1). These bicharacteristics can be shown to be everywhere tangential to S and, 
indeed, are generators of S. If C is one such bicharacteristic, we can, by virtue of 
(2.4), denote differentiation along C by d/dt. Hence, with (2.5), we have 

dU/dt = Ut + E U., dx,/dt, 
J =l 

or, using (1.1), 

(2.7) dt Uj, dt (ax, 
where, for convenience, we have dropped the subscript k denoting the particular 
eigenvalue hk giving rise to C. In what follows, this convention of using h to denote 
one of the hk's will be used. 

Now, suppose U is known at all points (t, x), 0 < t < r, and all x, and we want 
to find U at the point P(r + At, a'), where a = (a,, . .. , am) C Em. Let C be some 
bicharacteristic through P, and S(T, ,3) be the point where C meets the hyperplane 
t = T (see Fig. 1, which illustrates the case m = 2). Integrating (2.7) along C gives 

(2.8) U(P) = U(S) + Z fj (j4 I - A;) U, dt. 

The coordinates of ,B are determined by integrating the equations (2.5) so that 
jr+ A th 

(2.9) ,B = at - j x dt, 1 < i < m. 

Equation (2.8) is our desired integral system. 

P (t i- Af t .) 

/S(t,f3) X / 

A x2 

S (t.Q(t, ) 

FIGURE 1 
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3. Difference Schemes. We place a uniform rectangular mesh on E' in the 
usual way, using step sizes of Ax1, * * *, Axm in the direction of xl, * * *, x,,, respectively. 
A step size of At will be used for the time variable. Assuming we know values of U 
at the time levels t, = jAt, 0 _ j < n, we want to develop schemes which allow us to 
find values at t,+1 = (n + I)At. 

The method we shall use to obtain such difference schemes will be to apply some 
quadrature formula to the integrals in Eqs. (2.8) and (2.9) and use an appropriate type 
of difference approximation for the space derivatives. For example, we could use 
Simpson's rule for the integrals along with a five-point central difference approxima- 
tion for the derivatives. The resulting formula would be one of high-order accuracy. 
However, it would require values of U at time t,,- as well as at tn and such "multi- 
level" methods are usually impractical from a computational point of view, especially 
for problems where m > 1. Hence, while recognizing that such higher-order schemes 
can easily be generated, we shall confine our discussion to single-step methods. 

3.1 Explicit Difference Scheme A. For the approximation of the integrals, we use 

t n + i. 
(3.1) f f(t, a) dt f(t, a) a)At. 

This gives 

(3.2) U(P) U(S) + E I - Ai) (U.,)Q At, 

where P, S and Q are as in Fig. 1. Since : is not, in general, a grid point, we approxi- 
mate U(S) by the truncated Taylor expansion about Q = (ta", a), 

M 

U(S) = Un(1) Un(a) + Z 3 - 

where U'(f) = U(t,, A). For the coordinates of A, we use (3.1) in (2.9) to get 

3i = ai - (&h/Xj)Q At, 

so that 

(3.3) U(S) .- U(Q)- E ( )(U.,)Q At. 

Now, to approximate the space derivatives in (3.3), we use 

(U,)Q- (1 - E_i)U'(A)/Ax;, if (ch/&Xi)Q > O, 
(Et - 1)U,G4/Axj, if (ah/aXi)Q < 0, 

where E+i and E_i are, respectively, the forward and backward shift operators with 
respect to the space variable xi. For the derivatives in (3.2), we use central differences 

(Uzj,) . (E+i - E_j* Un(a)/2 Axj. 

Finally, our approximation for U(P) is 
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U(P) Un+ U ( ) 

(3.4) . U (f) ? ] AxL [ XjQ 2 O Xi) 

t (h I+ Ai) Ei] U(a), 

which we shall call scheme A. 
Note that if we use lah/aXijQ - /mr1, where r, = At/Axi, then this scheme 

becomes the Lax scheme. 
3.2 Implicit Difference Scheme B. If we use 

At 
j f(t, a) dt - 2 [f(t.+ , a) + f(t., a)] 

as our integral approximation and the same derivative approximations as before, 
we get 

U(P) U`Aa) 

_U'a) + >3 [d (E?3 -1) 
j=1 Axj Lx OX 

(3.5) + I ahXI- A i (E+-E U-(a) 

A t a h 
I - Ai(E+i - E-i) U"+1(a) 4 i= Ax1 L\xj Q% 

which will be called scheme B. The operator Es i is to be interpreted as E+ i if (h/aXi)Q 
< O and E_ L if (&h/OXi)Q > 0. 

Since U`+ (a) appears on both sides of (3.5), this is an implicit method and an 
iterative procedure is used to solve it. We can write the scheme as 

(3.6) Un+1(a) = TUn+I(a) = C(a) + SUn+ (a), 

where C(a) is independent of Un+ '(a). Then, with some initial guess Un,`(a), we 
form successive iterates from 

(3.7) U n+1 (a) = T Un+1'(a), r = 0, 1, 2, 

To see when convergence of (3.7) can be guaranteed for arbitrary Uo+, we use 
THEOREM 1. The difference operator T defined in (3.6) is a contraction operator 

provided that 
(i) the Xi's are chosen such that &Oh/8aXtl < IlAil, I < j < m, where IAj|2 = 

p(A*A j); 
(ii) the matrices Ai are unifornily bounded by some constant R for all x; and 

(iii) At, Ax1 are chosen such that 

At/Axi < K1/mR, 1 < j < m. 

Proof. We first show that, for an arbitrary bounded vector function F1 defined 
on Em, 0, = TF, is also bounded. Let a be a lattice point. Then, from (3.6) and the 
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Cauchy inequality, we have 

2 1 C(a) 12 j (i&4h I- -AE]F1(a) 2} 

14|(a)12 = 4p(a)4k (a) < 2C(a) + 16 Iri [E- E 

<2 C(a) 2 + a E (1E+,Fi(a)j2 + 1E_,Fi(a)2). 

Hence, 

11X/>112 = Ej(a) 12Ax < 2 H CI 12 + 2 1IF 1112 
a 

where Ax = HI' Ax;. 
Next, if F2 is also bounded and ?2 = TF2, then 

1k1(a) - c2(a)I = 4E r I Ai [E+j - E_i](F,(a)- FA?a)) 

I (a) 12 

<~ Z E {E+i(Fl (a) - FE-))j2 + iE(Fl(a) - F2(a))1)} 

so that I 11 - 02112 < IF1 -F2112. Q.E.D. 
Using this result and the principle of contraction mappings, we see that, under 

the conditions (i)-(iii), the iteration (3.7) must converge to the unique solution of 

U8l= T Un+ 

for any initial approximation Ug+l'. We note in particular that, if we choose Uw+' = un 

then Un-Fl is the approximation we would obtain for Un+ by applying scheme A 

to U. Hence, B will evidently give more accurate results, but at the expense of 

considerably more computation, since each iteration is approximately equivalent 

to a single step with A. 

4. Convergence and Stability. We first consider the case where the coefficient 

matrices Ai are constant. For scheme A, we shall prove stability, provided certain 

conditions are satisfied. The convergence will then follow by the Lax Equivalence 

Theorem [14, p. 45]. Scheme B will be shown to be stable whenever A is. 

We shall show stability by making use of the amplification matrix. Briefly, if we 

assume that U is periodic in each space variable xi and has period Li in x,, then the 

Fourier representation of Un(x) is 

UnX 
\ 1/2 

EV 
U (x) = 

(L,L2 . L) E V((k) exp (ik x), 

where ? is the lattice of points k = (kl, , kin) such that each component k. runs 

over the values 2-rsi/Li, si an integer. From the difference scheme relationship be- 

tween Un and Un+ we obtain the relation 

Vn+l(k) = G(At, k) V"(k) 

between the Fourier coefficient vectors. G(At, k) is called the amplification matrix. 

Denoting the eigenvalues of G by Pi_ 1 < i < N, the von Neumann necessary con- 

dition for stability is 
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(4.1) jili < 1 + O(At), 1 ? i < N, 

for all k E ? and 0 < At < r for some r > 0. Further, it can be shown [14] that, if 
G(At, k) is uniformly diagonalizable, i.e., if for each k there exists a nonsingular 
matrix T such that T-1GT = A is diagonal and T, T1 are bounded independently 
of k and At, then (4.1) is also sufficient for stability. 

For scheme A, the amplification matrix is 

G(A t, k) = - m: ri_ I +- E I - Ai ri exp (ikiAxi) 

+ j (xi I + A9iri exp (-ikiAxj), 

where r, = At/Ax,. 
LEMMA 1. The amplification matrix G(At, k), corresponding to scheme A, is uni- 

formly diagonalizable for all k E ? andfor all 0 < At < T. 
Proof. We can write the amplification matrix as 

G(At, k) = (I - 2 d .2ri sin I- iA, 
1 ax7 

where A = E Air, sin ao, ao = kjAx, and ,S = aj/2. Since the given system is 
hyperbolic, it follows that A is uniformly diagonalizable and hence, so is G(At, k). 

With this result, we see that (4.1) is both necessary and sufficient for stability. 
Our next result gives sufficient conditions which guarantee that (4.1) holds. 

LEMMA 2. The eigenvalues of G(At, k) for scheme A are uniformly bounded by 
unity in absolute value if 

(i) There exists a constant R > 0 such that I IAi I -< R for all x E Em and all 
< j < m; 

(ii) Iah/aXIl ! R, 1 < j < m; and 
(iii) ri < lah/aXil/mR2, 1 < j ? m. 
Proof. The eigenvalues of G are of the form 

v = (1- 2 >Zr' oh 
sin32 )i -A 

where -u is an eigenvalue of E A iri sin ci, with a& and Oi as above. Then 

-2 = -2 EI ri 
ah 

sin2 i3) + ,2 

?1I - 4 >j ri 
- sin + 4 E rj2 sin4 i + A2.. 

Now, 

IuA -< I H A iri sincaIjI < R E ri Isin aj, 

and so 

2 = IA!2 < 4mR2 E r42(Sin2 
I3 

-sin4 p3) 

Hence, 
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I1 + 4 Er rs(lR ri - X ) sin j 

j~~~,j2 ~ ah 2 h sin < 

+ 4m E ri( - Kj ) sin4 1 ? 1. Q E D. 

THEOREM 2. If the Xi's are chosen so that 

lahlaX,j < max Ail R, 1 < m 

then, in the case of constant coefficients in (1.1), difference scheme A is stable and 

convergent If 

(4.2) ri j Jah/aXjI/mR2, 1 < j < m. 

Proof. By Lemma 2, we see that the eigenvalues of G(At, k) will satisfy the von 
Neumann stability condition (4.1). The scheme is easily shown to be consistent [12] 
and so convergence follows from the Lax Equivalence Theorem. Q.E.D. 

For scheme B, we prove 
THEOREM 3. If the conditions of Theorem 2 hold with strict inequality in (4.2), then 

scheme B is also stable for problems with constant coefficients. 

Proof. We shall use the notation U' and W' for the approximations by schemes 
A and B, respectively, to the solution at time t = nAt. First, we note that, by hypoth- 
esis, the operator T of Theorem I is a contraction operator. Hence, the vectors 
Wr>, defined by 

=+1 T r > 0, 

converge to W- '- for arbitrary initial guess W, - l. In particular, if we set Wn+- u= , 
then, as we observed above, wi, t 1 = Un+ 1, and so we have, for any r, 

HW"+ - WIT(W '')II 
< at g 

of H - 

where 0 < a < 1. Now, 

11 Wn1 _ U+- IWntI _- n-l | r|W ,+1 - U || - I I I I 

'l.r.- - W-'.l + + !l l-WIl'l 
- c + 1= 1te n 

Hence, 

r+1 -= II U 

which is uniformly bounded for all ni and all r. The result then follows from the 
inequality 

I | | < || W + I r I- I - r - II + e 

for arbitrary e > 0, provided r is suLffiCiently large. Q.E.D. 
For problems with variable coefficients, we canl show local stability holds under 

conditions similar to those of Theoremi 21. We have, without proof, 
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THEOREM 4. Suppose that (1.1) is quasi-linear and that the coefficient matrices 
Ai = Ai(U, x) are uniformly bounded. If the Xi's are chosen so that 

Ih/JaXiI < max IlAill = R, 1 j < mn, 

then scheme A is locally stable if 

ri < lah/aXjI/MR2, 1 < i < m. 

Local stability of scheme B follows from a result similar to Theorem 3. We omit 
the details. 

In case the Ai's in (1.1) are symmetric, we can use the theory of Kreiss [8] on 
dissipative schemes to show global stability. 

Definition. A difference scheme is dissipative of order 2r, r a positive integer, if 
there exists a constant 6 > 0 such that for any = (1, j, m), t, = k,Ax1, satis- 
fying maxijij < -r, and all At less than some T > 0, 

Ivi ? 1 - ,5 1tr6 for all x, 

where v = v(x, At, t) is an eigenvalue of the local amplification matrix G(x, At, t). 
THEOREM 5. Suppose the system (1.1) of differential equations is symmetric and 

that the coefficient matrices Ai are uniformly bounded by a constant P and uniformly 
Lipschitz continuous functions of x, then the explicit difference scheme A is stable if, 
in Lemma 2, condition (ii) antd condition (iii) with strict inequality are satisfied. 

Proof. According to Kreiss' theorem, we need to show that scheme A is dissipa- 
tive of order 2 since it is accurate of order 1. Under our hypotheses, we can show by 
an argument like that of Lemma 2 that, for all x and all t with IJ _ 7r, I _ j < m, 
there exists a 6 > 0 such that 

IV(x, t, ) | K 1 - < | 2 

from which it follows that scheme A is dissipative of order 2. Q.E.D. 

5. Choice of Bicharacteristics. It is natural to ask if the choice of different 
bicharacteristics makes any significant difference in the solution obtained. To this 
end, let us examine the difference scheme A corresponding to two different choices 
of bicharacteristics. This may be done by choosing different eigenvalues h of the 
matrix E Ai Xi and/or different sets of values for the Xi's. In any case, the quantities 
jh/ahNij occurring in the difference scheme will have different values for different 
choices. Let a, and a', 1 < j < m, be the two sets of values of Idh/Xi I. Then, de- 
noting the solutions at time t = (n + l)At corresponding to ai's and a's by Un+1 
and W respectively, and assuming we use the same value Un at time t = nAt, 
we can write 

Un+l(x) - W?l (x) = (a - ai)ri[ U"(x) - 1 
(E+- U"(x) + E_i U (x))] 

= Z (a - aj)rjO(Ax") O(At2). 

The latter equality follows from tle stability condition ri < lah/aXilmR2, 1 j in, 
for then At and the Axi's are of the same order of magnitude and (a'-a,)r, = 0(1). 

Hence, the discrepancy in the solutions obtained by using two different bichar- 
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acteristics is at most of the same order as the truncation error, and so, up to the 
order of accuracy maintained, it does not matter if one or another of the bicharacteris- 
tics is used. 

6. Numerical Results. We present the results of computations on three specific 
problems. The problems were chosen not only to illustrate the implementation of 
our methods but also to demonstrate their usefulness in solving complicated problems 
such as the third example, where m = 3. Computations were done on an IBM 360/65 
using single precision. 

(1) Two-Dimensional Wave Equation. The differential system is 

O O .0 0 O -1 

dU_0 0 1 dU+ 0 0 0dU 

_0 2- ? -2 ? i 

with initial conditions 

cos x cos y 

U(0, x, y) = sin x sin y 

We have 

H = pX(X2 _ (X2 + X2)), 

so that 

1, ( + ) 1h2 = -hl, h3 = 0, 

and 

h, 0h2 xh O 9h, ah2 X2 
OX, OX, (2(X2 + ;2))112 ' 8X2 OX2 (2(X + X))1/2 

The exact solution is 

cos x cos Y Cos t 

U sin x sin y cost 

Lcos x sin y sin ti 

Computations were done using each of scheme A, scheme B and the general scheme 
of Lax [9]. In each case, we used Ax = Ay = .1 and r, = r2= .1. For scheme B, 
we used only two iterations of (3.7) per time step. In Table I, we give values obtained 
by each method as well as the true value at x = y = .5 at various time levels. Com- 
puting times for 100 time steps were .26, .48 and .32 minute for the respective methods. 

The results for method B are, of course, the best, but were obtained at approxi- 
mately double the computing cost, which, as indicated above, was to be expected. 
This behaviour was observed in all our computations. 
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TABLE I 

Solution of Wave Equation at x = y = .5. (For Numerical Computations 
Ax = Ay = .1, At/Ax = .1.) 

Time t Solution u v w 

Exact 0.7548 0.2253 0.0836 

0.2 Method A 0.7481 0.2233 0.0827 
0.2 

Method B 0.7552 0.2256 0.0831 
Lax 0.6925 0.2067 0.0779 

Exact 0.6759 0.2017 0.2017 

0.5 Method A 0.6616 0.1974 0.1975 
0.5 

Method B 0.6778 0.2026 0.2007 
Lax 0.5904 0.1762 0.1822 

Exact 0.4226 0.1261 0.3517 
Method A 0.4079 0.1217 0.3432 

1.0 Method B 0.4286 0.1281 0.3527 

Lax 0.3584 0.1069 0.3124 

Exact -0.3205 -0.0956 0.3826 

2.0 Method A -0.3169 -0.0946 0.3762 
Method B not computed not computed not computed 
Lax -0.2911 -0.0869 0.3340 

The remaining problems are of mixed initial-boundary-value type. Although we 
have only discussed solving the pure initial-value problem, it is quite easy to modify 
the difference schemes to incorporate boundary conditions. One such modification 
would be to restrict the choice of bicharacteristic to ensure that the point S in Fig. I 
lies within the region of interest. Also, for approximating space derivatives at bound- 
ary points, we must use forward or backward differences (whichever is applicable) 
for derivatives with components normal to the boundary. We shall not discuss the 
stability properties of the resulting system of difference equations. 

(2) Plane Unsteady Motion of an Isentropic Inviscid Fluid. The system of equations 
is 

lau au a u - + A-+ B- O, 
d)t d9x ay 

where 

p !au p ? ? v o p 
U= | A = u p 0 v 01 

K L j 
u 0 a L o p 
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Here, p represents the density, p the pressure and u, v are the components of velocity 
in the x and y directions respectively, c is the local sound speed given by c2 = yp/p, 
where -y is the adiabatic constant for the fluid. 

The problem was solved in the unit square 0 < x, y ? 1 with -y = 2, subject to 
the initial conditions, 

p(O, x, y) = (2-x)(2 - y)/10, 

p(O, x, y) = p x(OX, y), 

u(O, x, y) = v(O, x, y) = 0, 

and boundary conditions 

u(t, 0, y) = u(t, 1, y) = v(t, x, 0) -- V(t, x, 1) = 0, t > 0. 

The eigenvalues for the matrix AX1 + BX2 are 

h, = uXI + vX2, 

UX= A + vXV + c(X2 + X2)1/, 

1h3 = uX1 + uX2 - C(X2 + X 2)1/ . 

Solutions were obtained using each of the hi's in scheme A and the results were 
the same up to four decimal places. We also used the generalized Lax-Wendroff two- 
step method [9] which is a well-tested method for such problems. Table II shows some 

TABLE II 

Solution of Plane Unsteady Hydrodynamic Motion Problem at x = y = .5. (Ax = 

Ay = .1, At/Ax = .4for Method A, At/Ax = .2for Lax- Wendroff Two-Step Method.) 

Titne t Solution p u v p 

.04 Method A 0.2250 0.0120 0.0120 0.0507 
Lax-Wendroff 0.2250 0.0120 0.0120 0.0507 

0.2 Method A 0.2266 0.0604 0.0604 0.0518 
Lax-Wendroff 0.2268 0.0604 0.0604 0.0514 

0.6 Method A 0.2306 0.1638 0.1639 0.0540 
Lax-Wendroff 0.2331 0.1694 0.1694 0.0542 

1.0 Method A 0.2013 0.1831 0.1832 0.4105 
Lax-Wendroff 0.2136 0.1901 0.1901 0.4548 

typical results. It can be seen that our results compare favourably with those obtained 
by Lax-Wendroff. Comparative computing times were about .75 and 1.0 minute, 
respectively, for scheme A and Lax-Wendroff. 
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(3) Magnetolhydrodynamics Initial-Pressure Problem. This problem was considered 
by Friedlander [5]. It is a problem in three space dimensions and concerns the propaga- 
tion of small disturbances in a compressible fluid, which is also a conductor of elec- 
tricity, in the presence of a uniform magnetic field. It is assumed that the fluid fills 
the whole space. Energy dissipation by viscosity, heat conduction and Joule heat is 
neglected as is the displacement current. By linearizing the Lundquist equations, 
Friedlander obtained the system 

Pa + grad p' + 4 Ho X curl H' = 0, 

a? + po div v = 0, 
dt 

dt - curl (v X Ho) = 0, at 

div H' = 0, 

where p' = p - po, H' = H - Ho, v is the velocity and p is the density. Choosing 
the direction of Hn as the x-axis, we get 

Av ladp' 
-+? -=0, at p0 ax 

avSv I ap' AHo laHt a H' + - ? + =0. -- at Po aY 4rpo d y ax, 

9vz 1 dap' 2H (v H' a Hz' 
dt Po dz 4grpo AZ dx 

at + + o av. z = 0, 

aH (ar,, + dv)\ _ 
ai?t oay +azI 

at - Ho x = 0, 
am t avx 

at H0 
, 

= 0, 
wherep' = c~aH _~ x-Hpnn adv ar 

wherep'-C2pI, V. is the x-component of velocity and so on. The initial conditions are 

v(0, x, y, z) = 0, 

p'(0, x, y, z) = F(x cos 0 + y sin 0 cos4 + z sin 0 sin 6), 

H'(0, x, y, z)= 0, 

where F is an arbitrary function. The exact solution to this problem is given by 
Friedlander [5]. 
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The eigenvalues of A = E1 AiXi are 0, 4Cf, ?c-, 4b., where 

2 = 1{(C2 + b2)X2 + X((C2 + b2)2X2 
2 221/ 

2f {i + + b -CbI I 
2= 4(C2 + p - X(c 2)2X2 4c2b2X)1"2 Cs {C + b2)>i _ X.((C2 + b ))O4C b221 1 

b2 = H2X2 /47rpo, 

with X2 = X2 + X2 + X2 and b2 = Ho/4rpo. 
The region of interest was taken to be the unit cube 0 < x, y, z < 1. Boundary 

conditions were derived from the known exact solution. We used F(a) = cos a, 
Ho = 5, 1 = 1, Po = 1, 0 = = r/4. The explicit scheme A was used with the 
eigenvalues corresponding to cf and cJ. Mesh sizes used were Ax = Ay = Az = .2, 
At = .05. Some typical results are given in Table III. These results are not as ac- 
curate as in the previous examples and this is due to the rather coarse mesh used. 
Computation time was about 6 minutes and would, of course, be greatly increased 
for finer meshes since we are working with three space dimensions. 

7. Concluding Remarks. We have described and analyzed two finite difference 
schemes which can be used to solve a first-order quasi-linear hyperbolic system of 
partial differential equations. They have the advantage that they are applicable to 
problems in an arbitrary number of space dimensions and are relatively easy to 
implement. One possible significant disadvantage is that one must know an explicit 
representation for at least one of the eigenvalues hi. However, in most practical 
problems, these eigenvalues are usually known beforehand and so this difficulty will 
not be encountered very often. 

We conclude by remarking that we tried our methods on a hydrodynamic problem 
involving shock [12]. The numerical solutions obtained all had a well-defined shock 
front but the shock velocity was incorrect. This sort of behaviour is typical of many 
methods when applied to such problems and our methods apparently have not escaped 
these troubles. We therefore do not recommend our methods for shock problems. 
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